FOCUS LCDs

LCDs MADE SIMPLE"
Ph. 480-503-4295 | NOPP@FocusLCDs.com

TFT | OLED | GRAPHIC | CHARACTER | UWVD | SEGMENT | CLSTOM

¢

Application Note FAN9208

Programming the GT911 Capacitive Touch Controller
This user guide provides detailed information on programming
the GT911 capacitive touch controller used on the E43GB-I-
MW405-C MIPI Display.

mailto:NOPP@FocusLCDs.com

FAN9207 & FOCYS LEDs

Contents
Ta1ageTe [UTo1 AT] o HUUREOR R T PP PSP PTOTSTPRR 4
LG S T TP U PP USSP 4
FOCUS LCDS EA3GB-I-IMWADS-C ...c.oeiiiiiiiieeieee ettt ettt ettt sttt et et e sb e sbte st e sate s bt e bt e n bt e smeesmeeenteenteens 5
STM32H7471-DISCO Dev Board 12C SPeCifiCationcccueeiiiiiiiiiciiiee ettt e s e s e 6
PUI DO e aeaaaaeaaaaaens 6
[2C COMMUNICATION ..ttt ettt e ettt e sttt e s st e e s e b e e e e s sab e e e e s e ne e e e s easeeeesabeneesaareeeesaaneneessannneessans 7
12C Peripheral INItIaliZationc.ueee e e e e et e e e st e e e e aea e e e e nraeee e nnseeesannraeean 7
[2C4 Hardware and Pin IMaping......cceeecriieiiciiieeeciieeeeciiee e sttt e s ssatee e s ssatae e e sntaeesssssaeeessnsaeessnssseeesnnssenens 7
(€1 (O e Yol 171 @ PSPPI 7
Enabling the 12C4 Peripheral ClOCKvii ettt e e e e e aaeee s 8
Initialize the [2C4 PeriPhEral ... i e e e e st ae e e s raba e e e ssnbbeeeesnnaeees 9
Establish and Validate 12C COMMUNICAtIONSeeiuiiiiiiiiiiieieeteesiee ettt s 10
Handling Errors and DEDUEGEING.......uuviiiiiiiieciiie ettt s e e e ree e e s e e e s aaee e e s sbaeeesnbeeesenarees 10
GT911 Capacitive TOUCh CONLrOlEr OVEIVIEWviiiiiiiieecciiee e eitee et e et e e e rtte e e e sbee e e e s bee e s e sbeee e e s beeessnanes 10
GTI911 Configuration and REGISTEIS....ccccuuiiiecieee et e et e e et e e e et e e e ette e e e ebteeeeebteeeeebaeeeseseseeeesseeaeanns 11
GT911 12C4 Connections and Pin Mappingcccueeeiicieieieiiee e st e e scite e e ere e e e sate e e s ssnraeeesneaeeesans 11
GTI911 Register Map and OVEIVIEW......cciiiuiieeiiiieee ettt e ettt e e seette e e e sbee e e e sateeeessbteeeesbeeeessstaesssaseeeessnns 11
GTI911 Register CONFIGUIATIONueiiiiiiiee ettt e et e e e ebte e e e e bte e e e etteeesebteeesestaeeesntaeaesans 11
GTOLL INTEIAlIZATION. ce.teeeeeeeee ettt s e s e et et e e sreeseeesane e 12
TOUCKH EVENTS ..ttt et e b e bt s bt e s at e s a bt et e e bt e bt e s b e e sae e e abeeabeenbeeabeesheesaeesabeeabeebeenbeeaneas 14
Data Structure of TOUCKH EVENES.......iiiiiieeie ettt st sttt e e e s e s ane e 14
TOUCh INITIATIZATION ...ttt s e et b e sree s e sane e 14
T Yo [TaY= Wo T ol o T D - | - PSR 15
o Tol Ty gV o TU ol o I V=T o | A SRR 15
Optimization CONSIAEIATIONSciiiiciiiieiciieee ettt e e et e e e ebte e e e sbteeeesbteeeesbteeessassaeeessssaeasanes 17
GESTUINE RECOGNITION ... ettt s s s nanannnnnannnn 18
Configuring the GT911 for Gesture RECOZNITIONcciiciiiiiicciiiee ettt e e e et e e e e saaeeeeeans 18
Processing GeSTUIE EVENTS .o 18
Gesture Mode VS. TOUCH IMOOEcoouiiiiiie ettt et e s s e e sreeenneeas 21
Optimizing GESTUIrE HAaNAIING ...ccieeiiie ettt et e e et e e e st e e e e s bt e e e e sbaeeeesbtaeeessaneeeanns 22
JiNoTo][orTaToT oI o} u=T={ - 1 4 o] o NP PSPPI 22
16073 ol V1o o PO P ST PRR PP 24
2T ole Y] aT=T gL F=To I oD q A o =T o L ESTR 24
AdditioNal INFOrMATION ...c..eiiiiiieee et st st e b e b e s beesreesaeesnneereens 24
LCD HandliNg PreCAULIONSciiiciiieeiciiieeeciieee et te ettt e e ettt e e e e ette e e e eataeeeeataeeesstaeeeeasaeeesassseeeeanssaaesanssaeesansnneen 25
DKo - 14 1T TSP P PP URTOPRRTOURRUIT 25
REVISION HiSTOIY i 25

2 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

List of Figures

FISUIE 1: EA3GB-I-IMWADS-Ceveeiiieeiiee ettt ettt ste e sttt e st e ste e ssaeeesate e ssbaeessteessbeessaseesaseesnstassnseeenssessnsessnssessnsessnses 5
= U N R €] S (O N @e Yo {7 ={0] = (o) o RPN 8
Figure 3: RCC 12C and GPIO Peripheral Clock ENABIEoviiiiiieeeee et 9
Figure 4: Initializing the 12C4 PEriPNEralooouiiii ettt e et e e s e stte e e s e rte e e e ebae e e e sntaeeeeans 9
FIGUre 5: GTILL IMaiN REEISTEIS ...eueiiiiiiiiieiiiteee ettt e e e e ettt e e e e e s e st e e e e e s s aabeeeeeeesesaassbaeeeeeesesannssnanes 11
FIGUIE B: RESEE SEOUEBNCE ..coiiiiiettetee ettt ettt e e e ettt e e e e s s sttt e e e e e s s aabteeeeeesesaassbaeaeeeesesaassnanens 12
Figure 7: GTO11 INItI@liZatiON .ooc.eviiiieeiiee et e e st e e s saaae e e s ba e e e ssasaeeesansseeesannaeeean 12
Figure 8: GTI11 CONFIGUIALION ..uuiiiiiiiiie ettt ettt e et e e et e e e s e e e e e ssataeeesasaeaesanseeaesansbeeesnnnneeenn 13
FIgure 9: TOUCH Data STIUCLUIEiiiiiiiiie ettt ettt e e et e e st e e e s sataeeesasaeeesansaeaesansseeesannneeean 14
Figure 10: Touch Interface INItializationoocciiii i e e s sabae e e ssaaeee s 14
Figure 11: Reading the Touch Events from TOUCHh_ProCess().....ceeecueriiiieiiieeiieecieesieeesiteesteeesieeesreesneeesaneeens 15
Figure 12: The Call to Process_TOUCHEVENTS() ...ccuiieciiieiiie ettt ettt ee sttt e s te e e sate e sbee e saae e s steeesaeesaneeens 15
Figure 13: Retrieved the RaW TOUCH Data.......cccuiiiiiiiiie ettt e e sae e e s saaae e e ssnbae e e ssnnneee s 16
Figure 14: Mapping the COONTINAtESccccuiieiiiiiiececiiee ettt e et e e et e e e e ettae e e s eateeeeesasaeeeerasaeeesasseeeesansseeesansnneens 16
= U T BT Ko 10 ol oY V=T o A Y/ o 1R 16
Figure 16: TOUCH Lift Off PrOCESSING.....uvii e eeiiie ettt eete e e e et e e e s eata e e e e sataeeeeaasaeeeesnsaeeesansseeesansneeens 17
Figure 17: Touch Event Processing in the Callback FUNCLIONccociiiiiiiiiiicceeeccee e 17
Figure 18: Capturing the GESTUINE EVENT........ccoccuiiii ettt e e et e e e e stae e e e eataeeessasaeeesnsaeeesannaneens 18
= U I R R o o Tl CT=To AU =T | R 19
= UYL 0 F =T Vol o WU 19
FIBUIE 2L ROTa O i 20
FIBUNE 22 S i 20
Figure 23: GestUre HandIEr PArt L........ooooiiiiieiiie ettt ectt e e ettt e e e e tte e e e st e e e e saaa e e e easaeeeeansaeeesansseeesannaneens 21
Figure 24: GestUre Handler PArt 2...... ..ottt e et e e e s tr e e e et e e e ssa b e e e ssnsaeeessnsseeessnnaeeean 21
Figure 25: 12C CoNTiZ iN IMIAIN coo.euiiiiiiiiiie ettt e ettt e et e e e e ta e e e satbeeesaataeeesataeeeeansaeeesansseeesansaneean 22
Figure 26: Touch INitialization inN Main.........eii i e e e e e e e s arae e e s aaseeessnnaeeees 23
Figure 27: Event Callback HanIErSooiuiiii ettt ettt e e s ta e e e s satae e e ssaabeeessnnaeees 23
Figure 28: The Main WHIlE LOOP ..uiiiiiiiieiiiiiie et ee ettt ettt s et e et e e s et e e e s sataeeesataeeesansaeeesnnssaeesannaeeean 23

3 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

Programming the GT911 Capacitive Touch Controller

The GT911 is a capacitive touch controller used in embedded systems for its precision and versatility.
It supports up to 5-point multi-touch with high accuracy and fast response times. The GT911 also
supports several built-in gesture recognitions, including swipe, multi-press, and pinch.

The controller features adjustable resolution, configurable touch sensitivity, and advanced noise
immunity, making it ideal for modern touch-based applications. With its 12C interface, the GT911
simplifies integration into a variety of embedded platforms.

Introduction

This application note focuses on using the GT911 touch controller in conjunction with the
STM32H7471-DISCO development board and the Focus LCDs E43GB-I-MW405-C display. The E43GB-I-
MW405-C is a 4.3-inch TFT LCD with a resolution of 480 x 800 pixels, offering bright and vivid visuals
for user interfaces. The display includes the GT911 capacitive touch controller, enabling responsive
and precise touch input across its surface.

The STM32H7471-DISCO development board, based on the STM32H747 dual-core microcontroller,
provides powerful processing capabilities and a rich set of peripherals. Its 12C4 peripheral is utilized
for communication with the GT911 touch controller. The I12C4 interface operates with flexible clock
configurations, supports multiple addressing modes, and integrates robust error handling, making it
well-suited for handling touch data efficiently.

The driver code being developed in this application note takes advantage of the ARM CMSIS header
files and some of the low-level STM32 HAL code for peripheral initialization. The GT911, Touch, and
higher-level code is of a bare-metal design to facilitate adapting to other microcontroller platforms.
Only the low-level peripheral code is dependent on the MCU architecture.

This document covers:

1. Initializing the 12C4 peripheral on the STM32H7471-DISCO.
2. Configuring and initializing the GT911 touch controller.
3. Reading and writing data to the GT911 touch controller via 12C.
4. Developing application-level code to process touch events and report X/Y coordinates.
5. Programming gesture recognition.
GTIN

The GT911 is a high-performance capacitive touch controller manufactured by Goodix Technology
supporting multi-touch and gesture detection.

4 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

Key features include:

Support for up to 5-point multi-touch detection
Built-in touch key functionality

32-bit CPU core for efficient touch processing
Automatic calibration and drift compensation
Low power consumption modes:

Normal working current: 3.5mA (typical)

Sleep mode current: < 50uA

Hibernation current: < 10pA

Operating voltage range: 2.8V to 3.3V
Sampling rate up to 100Hz

High noise immunity and interference resistance
Built-in voltage regulator

Support for various screen sizes up to 10 inches
I12C communication interface up to 400 kHz
Programmable interrupt trigger conditions

Focus LCDs E43GB-I-MW405-C

The Focus LCDs E43GB-I-MW405-C is a 4.3-inch TFT LCD module with integrated GT911 capacitive
touch controller.

¢

‘ FocusL.CDs.com

LCDs MADE SIMPLE”

Figure 1: E43GB-I-MW405-C

FOCUS LCDs

LCDs MADE SIMPLE"®

www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

Display Characteristics:

4.3-inch TFT LCD panel

Resolution: 480 x 800 pixels (portrait orientation)
16.7M colors (24-bit RGB interface)

LED backlight with 500 cd/m? typical brightness
Viewing angle: 80°/80°/80°/80° (L/R/U/D)
Operating temperature: -20°C to +70°C

Touch Panel Specifications:

GT911 capacitive touch controller
5-point multi-touch capability

I12C interface (address OxBA)

2mm cover glass thickness

>85% optical transparency

Surface hardness: 6H

Touch response time: <5ms
Position reporting accuracy: £2mm

&

STM32H7471-DISCO Dev Board 12C Specification

The STM32H7471-DISCO development board features multiple 12C interfaces with the following
capabilities:

Four I2C interfaces (12C1, 12C2, 12C3, and 12C4)
Support for Standard Mode (SM, up to 100 kHz)
Support for Fast Mode (FM, up to 400 kHz)

Fast Mode Plus (FM+, up to 1 MHz) on all 12C peripherals

Programmable digital noise filters
Programmable analog noise filters
SMBus 2.0/PMBus compatible
Programmable timings and duty cycles
DMA support for efficient data transfer
Dual addressing capability

7-bit and 10-bit addressing modes
Hardware CRC calculation

Purpose

This application note will walk through the implementation process, providing detailed C code
snippets and explanations for each critical step integrating the GT911 touch controller on the Focus
LCDs E43GB-I-MW405-C display with the STM32H747I-DISCO board.

FOCUS LCDs

LCDs MADE SIMPLE"®

www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

|2C Communication

The GT911 touch controller communicates via 12C, specifically using 12C4 on the STM32H7471-DISCO
board with a device address of 0OxBA and a maximum clock speed of 400kHz. In this application the
standard clock speed of 100kHz will be used for reliable operation.

The driver being developed includes error handling, timeout management, and proper peripheral
initialization. It's configured for 100 kHz standard mode operation but can be adjusted for fast mode
(400 kHz) by modifying the timing parameter in 12C_Init.

I12C Peripheral Initialization

The process of initializing the I12C peripheral on the STM32H74741-DISCO includes configuring the
GPIO pins, initializing the 12C4 peripheral, and finally establishing I2C communications.

I2C4 Hardware and Pin Mapping
I2C4 is another 12C peripheral available on the STM32H747. On the STM32H747I1-DISCO development
board, 12C4 is typically mapped to the following pins:

e PD12 for12C4_SCL (Clock Line)
e PD13for 12C4_SDA (Data Line)

Check the board schematics to confirm the pin assignments and ensure no conflicts with other
peripherals or features using these pins.

GPIO for 12C4

The GPIO pins used for 12C4 must be configured as alternate functions to support 12C
communication. Proper pin configuration ensures signal integrity and compatibility with the GT911
touch controller.

1. Set PD12 and PD13 as GPIO_MODE_AF_OD (alternate function open drain). This configuration
is essential for bidirectional communication on the 12C bus.
2. Enable the internal pull-up resistors (GPIO_PULLUP) on both pins to keep them in a known
state during idle conditions.
3. Setthe GPIO speed to "Fast" or "High" for high-frequency I12C communication.
4. Assign the alternate function for 12C4:
a. PD12-AF4_l2C4
b. PD13 - AF4_l2C4

Ensure external pull-up resistors (typically 2.2 kQ up to 4.7 kQ) are connected to the 12C bus lines if
internal pull-ups are insufficient for reliable operation.

7 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

FOCUS LCDs

LCDs MADE SIMPLE"®

Bice 2 &)
204 /* MSP Initialization and De-initialization */
static void I2C MspInit (void)
B

GPIO InitTypeDef GPIO InitStruct = {0};
RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit = {0};

/* Enable GPIO and I2C clocks */

H = =

!
]

=i /* I2C4 GPIO Configuration

* PD12 -> I2C4_SCL

* PD13 —> I2C4_SDA

£ 4
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE AF OD;
GPIO_InitStruct.Pull GPIO_PULLUP;
GPIO_ InitStruct.Speed = GPIO SPEED FREQ HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4 TI2C4;
HAL GPIO Init(GPIOD, &GPIO InitStruct);

/* Enable I2C4 interrupt */
HAL NVIC SetPriority(I2C4 EV IRQn, 0, 0);

Figure 2: GPIO Configuration

sl __HAL RCC_GPIOD CLK ENABLE() ;

212 —_HAT, RCC_12C4_CLK ENABLE()

213

214 /* Configure I2C4 clock source */

2315 RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK I2C4;

216 RCC_PeriphClkInit.I2c4ClockSelection = RCC_I2C4CLKSOURCE D3PCLK1;
217 HAL_RCCEX_ PeriphCLKConfig (&RCC_PeriphClkInit) ;

The function I2C_MspInit() creates a GPIO structure for configuring the 10 pins. Once that
structure is initialized the RCC clock for the GPIO peripheral is enabled. The next step is to populate

the GPIO structure with the configuration to enable 12C on pins 12 and 13.

Enabling the 12C4 Peripheral Clock

Before using the 12C4 peripheral, its clock source must be enabled through the RCC (Reset and Clock

Control).

1. Use the appropriate macro to enable the 12C4 clock, such as HAL_RCC_I2C4_CLK_ENABLE()

in the HAL library.

2. Verify that the clock for GPIO port D is also enabled, as 12C4 pins are connected to this port.

For example:

a. HAL_RCC_GPIOD_CLK_ENABLE()

Enabling these clocks ensures the GPIO and I12C peripherals can operate correctly.

www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"®

FAN9207

Biece » @]
2 /* MSP Initialization and De-initialization */
static void I2C MspInit(void)

GPIO InitTypeDef GPIO InitStruct = {0},
RCC PeriphCLKInitTypeDef RCC PeriphClkInit = {f);|

/* Enable GPIO and I2C clocks */
___HAL RCC_GPIOD CLK ENABLE() ;
__HAL RCC_I2C4 CLK ENABLE() ;

/* Configure I2C4 clock source */
RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK I2C4;
RCC_PeriphClkInit.I2c4ClockSelection = RCC_I2C4CLKSOURCE_D3PCLK1;

Figure 3: RCC I12C and GPIO Peripheral Clock Enable

Initialize the 12C4 Peripheral

The 12C4 peripheral must be initialized with settings compatible with the GT911 touch controller. This
includes:

e Clock Speed: Set the 12C clock speed based on the GT911's requirements, such as 100 kHz
(Standard Mode) or 400 kHz (Fast Mode).

e Addressing Mode: Configure 12C4 for 7-bit addressing, as the GT911 typically uses a 7-bit
slave address (e.g., 0x5D [0xBA/OxBB] or 0x14 [0x28/0x29]).

e Timing Configuration: Calculate the timing register values using STM32CubeMX or manually
determine them based on the reference manual. This configuration depends on the 12C clock
source, peripheral clock frequency, and desired 12C speed.

e Initialization: Use HAL, LL (Low-Level) drivers, or direct register manipulation to initialize the
I12C4 peripheral. Specify parameters such as the clock speed, addressing mode, and timing
values.

Bicc 2 8|
! I2C_status I2C_Init(I2C_Config *config)
=1

if (i2c_initialized)
{

return I2C_ERROR BUSY;

; * 100 kHz standard mode with 54 MHz clock */
1 = config->ownAddress <<

Mode = config->addressingMode == ? I2C_ADDRESSINGMODE_ 7BIT :
lode = config->dual sing = 3 C_DUALADDRESS_DISABLE :
2C_GENERALCALL DISABLE : I2

2c4.Init.DualAdd:
hi2c4.Init.GeneralCallMode = config-:
hi2c4.Init.NoStretchMode = I2C_NOSTR

* Initialize I2C peripheral */
I2C MspInit();
if (HAL I2C_Init(&hi2c4) != HAL OK)
{
return I2C_ERROR_INIT;
)

/* Enable ana filter *
if (HAL_I2CEx ConfigAnalogFilter(&hi2c4, I2C_ANALOGFILTER ENABLE) != HAL OK)
{

return I2C_ERROR_INIT;
}

i2c_initialized = 1;
return I2C_OK;

Figure 4: Initializing the 12C4 Peripheral

9 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

Establish and Validate 12C Communications

Once the 12C4 peripheral is initialized, you can communicate with the GT911 touch controller. The
typical order of events is:

1. Generate a Start Condition: The master (STM32H747) generates a start condition by pulling
the SDA line low while SCL remains high.

2. Send the Slave Address: Send the 7-bit GT911 address followed by the R/W bit (0 for write, 1
for read).

3. Exchange Data: Transmit or receive data in 8-bit chunks. For each byte sent, the slave must
send an acknowledgment (ACK).

4. Generate a Stop Condition: The master releases the SDA line to high while SCL is high to
signal the end of communication.

After configuring the 12C4 peripheral, verify the setup to ensure successful communication with the
GT911. Use an oscilloscope or logic analyzer to monitor the SDA and SCL lines. Inspect the traffic for
proper waveforms and timings on PD12 (SCL) and PD13 (SDA). Verify the presence of pull-up resistors
(internal or external, typically between 2.2kQ to 4.7kQ, but could be as high as 10kQ) on the I2C lines.
Finally, test the basic read and write operations to ensure that the GT911 responds correctly to its
I2C address.

Handling Errors and Debugging
I2C communication issues can occur due to electrical noise, incorrect configuration, or addressing
errors. Implement robust error handling:

1. Check for acknowledgments (ACK/NACK) after every data frame.
2. Handle bus errors, arbitration losses, or timeouts using HAL or custom routines.
3. Implement retry mechanisms for transient failures.

GT911 Capacitive Touch Controller Overview

The GT911 is a capacitive touch controller that communicates via the 12C bus. It supports up to 5
touch points and offers flexible configuration for screen resolution and touch parameters.

Key features include: 12C slave mode with a default 7-bit address, configurable resolution and
orientation, and registers for status, configuration, and touch data.

10 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

GT911 Configuration and Registers
GT911 12C4 Connections and Pin Mapping
The GT911 is connected to the STM32H7471-DISCO's 12C4 peripheral as follows:

e |2C4 SCL (Clock Line): PD12 — configured in the 12C code.
e |2C4 SDA (Data Line): PD13 — configured in the 12C code
e Interrupt Line: PK7 (used to detect touch events).

e Reset Line: PG3 (used to reset the GT911).

e Configure PK7 as an input pin for interrupt detection.

e Configure PG3 as an output pin for resetting the GT911.

FOCUS LCDs

LCDs MADE SIMPLE"®

&

Verify these pin connections on the development board and ensure no pin conflicts.

GT911 Register Map and Overview

The GT911 touch controller features a comprehensive internal register map for configuration and
control. Key register sections include:

Register Range Description Access
0x8040 — 0x8046 Command and Status R/W
0x8047 — 0x80FF Configuration R/W
0x8100 — 0x813F Coordinate Data R
0x8140 — 0x814E Product ID and Information R
Ox814F — 0x8156 Touch Point Data R
0x8157 — Ox81FF Reserved -

GT911 Register Configuration

Key registers for GT911 configuration:

|Bicc BHowith £ B [Eesiie |Bitouchn |Btouch.c |Bitouch_errorc | B msinh |Bimin.c

/* GT911 Register Map */
8 #define GT911_PRODUCT_ID 0x8140
85 #define GT911_ FIRMWARE VER 0x8144
86 #define GT911 CONFIG VER 0x8047
87 #define GT911 CONFIG_FRESH 0x8100
88 #define GT911 READ XY REG 0x814E
89 #define GT911 POINT1 INFO 0x814F
90 #define GT911_ POINT2_INFO 0x8157
91 #define GT911 POINT3_ INFO 0x815F
92 |#define GT911 POINT4 INFO 0x8167
93 #define GT911 POINT5_ INFO 0x816F
94 #define GT911_ STATUS_REG 0x814E
5 #define GT911_ BUFFER_STATUS 0x814E

Figure 5: GT911 Main Registers

11

www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"®

FAN9207

GT911 Initialization

The initialization of the GT911 begins with configuring the I12C peripheral on the STM32H747I-DISCO
board. The 12C interface is enabled and set to operate at either standard (100kHz) or fast (400kHz)
mode, depending on system requirements.

GPIO pins for the INT and RESET lines must also be configured. The RESET pin is set as an output,
while the INT pin is configured as an open-drain output. The default state for these pins is High for
RESET and Low for INT.

The GT911 is then initialized through a specific reset sequence. The sequence involves toggling the
RESET pin, holding the INT pin low, and finally releasing it after bringing the RESET pin high. A wait
time of 100 milliseconds ensures the controller has enough time to initialize.

Bizch (= = B Baoiic » o |SBin |Btouche | B touch_errorc |8 main |8 mainc
180 GT911_Status GT911 Reset (void)

o

/* Hardware reset sequence would go here */

/* This typically involves toggling Reset and INT pins */
/* Reset sequence */

HAL GPIO WritePin(GPIOG, GPIO PIN 3, GPIO PIN RESET);

HAL Delay(10);

HAL GPIO WritePin(GPIOG, GPIO PIN 3, GPIO PIN SET);

HAL Delay(50);

o O

@ o © o
O - o

o

e o O e S

Figure 6: Reset Sequence

Communication is verified by reading the Product ID (1) from the GT911’s registers using its 12C
address. A successful read operation (2 and 3) confirms that the device is properly initialized.

Bk (= = E Hooiic » o |Eisihn | & touch.c |8 touch <rror.c |8 mains |B min.c
93 GT911_Status GT911_Init(GT911_Config *configq)

BH{

uint8_t temp bufl4];

/* Reset the device first */
if (GT911_Reset() !'= GT911_OK)
H {

return GT911 ERROR_INIT;
r }

/* Wait for device to stabilize */
HAL Delay(100);

/* Read product ID to verify communication */
if (GT911 GetProductID(temp buf) != GT911l OK)

=] I 1

return GT911 ERROR_INIT;

[1

/* Verify product ID (should be "911" or similar) */

113 if (temp buf[0] !'= '9' || temp buf[l] != '1' || temp buf[2] != '1')
114 © { 2
115 return GT911 ERROR_INIT;

}

/* Configure the device */ 3
return GT911 ConfigureDevice (config);

Figure 7: GT911 Initialization

12 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 $ FOCUS LCDs

The GT911’s configuration registers, starting at address 0x8047, allow fine-tuning of the touch
controller’s behavior. The configuration process begins with preparing the required settings. Key
parameters include the number of touch points (set to five), touch threshold, X and Y resolution
(480x800), interrupt trigger mode, and refresh rate (set to 5 milliseconds). These values are written
to the configuration registers sequentially.

(=T |Bgstin Hooiic » o [Eiouhn |Btouch.c B8
static GT911_Status GT911 ConfigureDevice (GT911 !
B{

or.c |B mainn |B mainc
fig *config)

uint8_t cfg buf[256];
memcpy (cfg_buf, GT911 DEFAULT CONFIG, sizeof(GT911_ DEFAULT CONFIG));

243 /* Modify configuration based on input parameters */

244 cfg buf[0] = config—>num_touch;
245 cfg buf[4] = (config->x_resolution >> 8) &
246 cfg buf[5] = config->x_resolution & ;
247 cfg buf[c] = (config->y resolution >> 28) &
cfg_buf[7] = config->y resolution &
/* Write configuration */
if (GT911 WriteReg(GT911 CONFIG VER, cfg buf, sizeof(GT911 DEFAULT CONFIG)) !'= G

H {
return GT911 ERROR CONFIG;
}

/* Trigger a config refresh */
uint8_t refresh cmd = :
if (GT911 _WriteReg(GT911 CONFIG FRESH, &refresh cmd, 1) != GT911_OK)
=] {
return GT911 ERROR_CONFIG;
}

/* Wait for refresh to complete */
HAL Delay(-

return GT911 OK;

Figure 8: GT911 Configuration

Several registers must be configured at initialization to function properly. Some of the key
parameters are:

Register Name Value Description

0x8047 X Output Max 0x01EO0 Horizontal Resolution (480)
0x8049 Y Output Max 0x0320 Vertical Resolution (800)
0x804B Touch Points 0x05 Maximum Number of Touch Points
0x8057 Module Switch 1 0x14 Enable Interrupt Trigger on Touch
0x805D Refresh Rate 0x05 Touch Data Refresh Rate (5ms)

Once the configuration data is written, it is saved to non-volatile memory by writing to the specific
control register located at 0x8040. Writing a value of 0x01 to this register ensures that the
configuration is stored and will persist across power cycles and resets. After saving the configuration,
it is necessary to write 0x80 to the same control register at 0x8040. This step transitions the GT911
from configuration mode to application (operation) mode, enabling it to process touch data.

Touch data is continuously updated in the GT911’s memory space, beginning at address 0x814E. The
system can either poll these addresses periodically or rely on the interrupt mechanism to read the
data only when a touch event occurs. The data includes details about the number of touch points,
their coordinates, and other relevant attributes.
13 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

FOCUS LCDs

LCDs MADE SIMPLE"®

Touch Events
Data Structure of Touch Events

The GT911 stores touch event data in its memory, starting at address Ox814E. The structure of the
touch data includes the following key fields:

Status Byte: This byte indicates the number of touch points detected and the status of the
touch data.

Touch Point Data: For each detected touch point, the data includes:

X-coordinate (2 bytes): The horizontal position of the touch point.

Y-coordinate (2 bytes): The vertical position of the touch point.

Touch ID: An identifier for the touch point, allowing tracking of individual touches.
Touch Event: The type of event, such as touch down, lift off, or move.

Each touch point’s data is arranged sequentially in the memory block.

Bizeh |Bizee |Bgoith |Bgtoric Hitouchh 2 £ [Elibuche | B touch erorc |8 mainn |8 meinc
90 /* Touch state information */
91 typedef struct
92 B¢
93 uintlé t x; /* X coordinate */
94 uintlé t .y; /* Y coordinate */
95 uintlé_t size; /* Touch size/pressure */
96 uint32_t timestamp; /* Time of event in ms */
97 uint8 t id; /* Touch point ID */
98 Touch EventType event; /* Type of event */
99 } Touch State;

Figure 9: Touch Data Structure

Touch Initialization

Initialization of the touch interface provides some of the configuration data to be stored in the GT911
configuration structure. The maximum number of touch points and the resolution of the touch panel
are the data stored in the config structure. Then the history, current state, and previous state arrays

are set to zero.

[=1E B gtotin = B |Bitcuchn Htouchc # & |Biouchierone | B rmsinn |B rsin.c

=
=}

HAL StatusTypeDef Touch Init(Touch Config *config)
{
GT911_Config gt911_config;

/* Store configuration */
memcpy (&touch config, config, sizeof(Touch Config));

/* Initialize GT911 touch controller */
gt911l_config.num touch = MAX TOUCH_ POINTS;
gt911_config.x resolution = config->screen width;
gt911_config.y resolution = config->screen_height;

if (GT911_Init(>91l config) !'= GT911_OK)
{

return HAL ERROR;
}

/* Initialize internal state */
memset (Eouch_history, 0, sizeof(touch history));

memset (current_state, 0, sizeof(current_state));
memset (previous_state, 0, sizeof(previous_state)):

Figure 10: Touch Interface Initialization

14 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 $ FOCUS LCDs

Reading Touch Data

Check for interrupts if the INT pin is configured, as the interrupt signal indicates new touch data is
available. To simplify the code for this application note, polling is used to check for updates. Read the
status byte at address 0x814E first to determine if new touch data is available. This byte also specifies
the number of touch points (ranging from 0 to 5).

|Bicc |Bgwitn = B |Btouchn Bitouchc # & [Elicih enone |B msink |8 mainc
HAL_StatusTypeDef Touch_Process(void)
B¢

/* Process power management first */

if (Touch_ProcessPower () != HAL OK)

=] {

Touch_HandleError (TOUCH_ERR_POWER_FAIL) ;
return HAL ERROR;

r }

/* Only process touch if we're in active or idle state */
if (current power state > TOUCH POWER IDLE)
=] {
return HAL OK;
}

GT911_TouchPoint points[MAX TOUCH_ POINTS];
uint8_t touch_count;

/* Read touch points from GT911 */
if (GT911_ReadTouchPoints(points, &touch count) != GT911 OK)
=] {
Touch_HandleError (TOUCH_ERR I2C_FAIL);
return HAL ERROR;
E }

1 /* Save previous state */
185 memcpy(previousﬁstate, current_state, sizeof(current state));

Figure 11: Reading the Touch Events from Touch_Process()

If the status byte indicates new data, the subsequent touch point information is read from the
GT911’s memory. Each touch point occupies a fixed number of bytes, and the data is extracted for all
active touch points. After reading the touch data, the status byte must be cleared by writing 0x00
back to address 0x814E. This step notifies the controller that the data has been processed and
prevents duplicate readings. This is handled from Touch_Process() by calling
Process_TouchEvents().

i /* Process touch events */
| Process_TouchEvents (points, touch_count);

Figure 12: The Call to Process_TouchEvents()

Processing Touch Events

The touch data is then retrieved, and it must be processed to get the information for the application.
As a first step the touch ID should be retrieved. The touch ID helps differentiate between multiple
touch points, allowing the system to track individual touches as they move or lift off. Then the touch
event must be interpreted.

15 www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"®

FAN9207

|Bicc |Basiin |Bgiic | B touchn Htouch.c % £ |Biouehienene |8 mainh | B mainec |

static void Process_TouchEvents(GT911_TouchPoint *points, uint8 t count)
432 B4
433 uint32_t current_ time = HAL GetTick();
434
435 /* Process each touch point */
436 for (int i = 0; i < count; i++)
437 o {
438 Touch State *state = ¤t statel[i];
439 B -
440 /* Get raw coordinates */
441 uintlé_t raw_x = points[i].x;
442 uintlé_t raw y = points[il.y;
443

Figure 13: Retrieved the Raw Touch Data

Mapping the coordinates is the next step in the process. The raw X and Y coordinates are scaled to
the resolution of the touch panel (e.g., 480x800) to align with the application’s display requirements.

444 /* Bpply calibration */

445 Apply Calibration(&raw_x, &raw_y);

446

447 /* Update state with calibrated coordinates */
448 state->x = raw_x;

449 state->y = raw_y;

450

451 state->size = points[i].size;

452 state->id = points[i].track id;

453 state->timestamp = current time;

Figure 14: Mapping the Coordinates

The event type for each touch point is analyzed to determine the action. For example:

e Touch Down: A new touch point has been detected.
e Touch Move: An existing touch point has changed its position.
e Touch Lift Off: A touch point has been released.

455 /* Determine event type */

456 if (previous_state[i].event == TOUCH_EVENT_ NONE)

457 {

458 state->event = TOUCH_EVENT_PRESS;

459 }

460 else if (state->x != previous_state[i].x || state->y != previous_statel[il.y)
461 [{

462 state->event = TOUCH_EVENT_MOVE;

463 }

464 else if (current_time - previous_state[i].timestamp >= touch config.long pre
465 £ {

466 state->event = TOUCH_EVENT LONG PRESS;

467 }

Figure 15: Touch Event Type

The release or lift off event is processed separately.

16 www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"®

FAN9207

Bixh (=12 |Bswith B georic B touchin Bitouchc # & |Eiauehiensne |8 meinn |8 main.c |
30 /* Check for released touches */
for (int i = count; i < MAX TOUCH POINTS; i++)

if (previous_state[i].event != TOUCH_EVENT_ NONE)

Touch_State *state = ¤t_state[i];
state->event = TOUCH_EVENT RELEASE;
state->timestamp = current time;

if (event_callback !'= NULL)
{

event_callback(state) ;

}

Figure 16: Touch Lift Off Processing

Based on the touch data, application-specific actions are executed. This might include updating a
graphical user interface, triggering events, or controlling devices. The processing of the touch events
is handled in the callback function located in the main.c file.

]E 2c.c |E gt911h]gt'}ﬂ,c]Etouch.h]Btcucn.c]E:eucn_encr.c IEmam"ﬂ = mainc 2 B
/* Touch event callback */
static void Touch_EventHandler (Touch_State *state)

,}{
% switch (state->event)
{

case TOUCH EVENT PRESS:
= printf("Touch Pre d\n",
state->id, state->x, state->y, state->size);

break;

X=%d, Y=%d, S n"
X=%d, Y=%d, Size=%

s: ID=%d,

case TOUCH EVENT RELEASE:
printf ("Touch Release:
break;

ID=%d\n", state->id):;

case TOUCH _EVENT MOVE:
= printf ("Touc
= state->id

: ID=%d, X=%d, Y=%d\n"

, state->x, state->y)

’

break;

case TOUCH EVENT LONG PRESS:

=] printf("Long P s: ID=%d, X=%d, Y=%d\n",
state->id, state->x, state->y);
break;
default:
break;

Figure 17: Touch Event Processing in the Callback Function

Optimization Considerations

Efficient handling of touch events is critical to maintaining responsiveness in the application. Using
the INT pin to signal new data reduces the need for constant polling, conserving processing
resources. Then retrieve all touch point data in a single I12C transaction to minimize communication
overhead. Implement debouncing logic to filter out noise and spurious touch events, improving
accuracy. There is some debouncing logic already part of the GT911 controller. This is where the
filtering registers are utilized. When possible, ensure the touch data is processed within the required
refresh period (e.g., 5 milliseconds) to maintain a smooth user experience.

17 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

Gesture Recognition

The GT911 uses its integrated gesture engine to analyze touch data patterns in real-time. By tracking
the movement and position of one or more touch points, the controller identifies predefined
gestures. These gestures are mapped to specific codes, which are then stored in a dedicated register
for retrieval by the host system.

The commonly supported gestures include swipe gestures (up, down, left, and right), zoom gestures
(pinch-in and pinch-out), long press, and double tap. The gesture recognition process reduces the
computational burden on the host system by offloading pattern analysis to the GT911.

Configuring the GT911 for Gesture Recognition

Gesture detection is enabled by writing to the gesture enable register, typically located in the
configuration block of the GT911’s memory. The specific address and value depend on the desired
gesture set. Adjust gesture-specific parameters such as sensitivity, speed thresholds, and movement
ranges. These parameters ensure accurate recognition based on the application’s requirements and
display size.

After updating the gesture settings, write 0x01 to the control register at address 0x8040 to save the
configuration. Transition the GT911 to application mode by writing 0x80 to the same register.

Verify that gestures are detected correctly by reading gesture event data from the dedicated register
after performing gestures on the touch panel.

Processing Gesture Events
The GT911 stores gesture event information at address 0x814F. This register contains the gesture
code, which corresponds to the detected gesture.

The code breaks up the gesture processing into several functions. If the gesture feature of the GT911
is enabled in the firmware, then the initial processing is performed in the Touch_Process() function.

Bich =1 =B |Bgsiic |Btcuchn Htouch.c & [Eilchierone | B mainn |8 mainc
196 | /* Process gestures if enabled */

if (gestures_enabled)

=) {
} : & o (Process_Gestures(points, touch count) !'= HAL OK)
=] {

1 Touch HandleError (TOUCH_ERR_GESTURE_FAIL) ;

i return HAL ERROR;

I }

1 if (last_gesture.type !'= GESTURE_ NONE)

=] {

1

|

|

|

diagnostics.gesture_events++;

}

|
|
|
-
L
|8

Figure 18: Capturing the Gesture Event

18 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

FOCUS LCDs

LCDs MADE SIMPLE"®

Once the gesture event has been captured, the event is processed in the Process_Gestures()
function. The gesture code is retrieved from the gesture register. This code uniquely identifies the
type of gesture detected (e.g., swipe left, zoom in).

Bz

[IBgsiin = B B touchin [Htouche # & E(outhgrror.c |8 mainh |8 mainc

502
503
504
505
506

524
525
526

static void Process_Gestures(GT911_TouchPoint *points, uint8_t count)

B{
/* Reset last gesture */
last_gesture.type = GESTURE_NONE;
if (count == 1)

H {

/* Check for swipe gestures */
Touch_State *start = &touch historyl(history index - 1) % TOUCH HISTORY_ SIZE
Touch_State *end = ¤t_state[0];
Detect_swipe(start, end):;
r }
else if (count == 2)

{

{1}
1]

/* Check for pinch and rotation gestures */
Detect_Pinch(points, count);
Detect_Rotation(points, count);

+ }

/* Call gesture callback if a gesture was detected */
if (last_gesture.type != GESTURE_NONE && gesture_callback != NULL)
{

gesture callback(&last_gesture) ;

Figure 19: Process_Gestures()

Additional processing is called to handle the pinch, rotation, and swipe gestures.

w
o

(G S NN

(G S)|
O W@ OB WN -

(S INE BE S, RS, S, R RS S, S RS, RS RS, IS S RS

ooy O) OY OY O U1
g W N

static void Detect Pinch(GT911_ TouchPoint *points, uint8_t count)
=E
if (count !'= 2) return;

= float current distance = Calculate Distance(points[0].x, points[0].y,
points[1].x, points[l].y);

= float previous_distance = Calculate_Distance (previous_state[0].x, previous_state
+ previous_statel[l].xX, previous_statel[ll]

float diff = current_distance - previous_distance;
if (fabs(diff) >= touch config.swipe_ threshold)
{

{1}
il

last_gesture.type = (diff > 0) ? GESTURE_PINCH OUT : GESTURE_PINCH IN;
last_gesture.magnitude = fabs(diff);

Figure 20: Pinch

19 www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"®

FAN9207

¢ Bice |Boortn |Booic |Biouchn Htouche # @ Btouchercre |Bmanh |Bmane |
7 static void Detect Rotation(GT911_ TouchPoint *points, uint8_t count)
568 HI{
569 if (count != 2) return;
570
571 H float current_angle = Calculate Angle(points[0].x, points[0].y,
572 points[1].x, points[1].y);
573 E float previous_angle = Calculate_ Angle(previous_statel[0].x, previous_state[0].y,
574 - previous_state[1].x, previous_statell]l.y):
515
576 float angle diff = current_angle - previous_angle;
577 if (fabs(angle_diff) >= touch_config.rotate_threshold)
578 H {
579 last_gesture.type = (angle _diff > 0) ? GESTURE ROTATE_CW : GESTURE_ROTATE CCW;
5§ last_gesture.angle = fabs(angle_diff);
r }
E}

Figure 21: Rotate

528 static void Detect Swipe(Touch State *start, Touch State *end)
B¢
float dx = end->x - start->x;
float dy = end->y - start->y;
532 float distance = sqrtf(dx * dx + dy * dy);
533
534 if (distance >= touch config.swipe_threshold)
S35 H {
536 /* Determine swipe direction */
537 if (fabs(dx) > fabs(dy))
538 H© {
539 last_gesture.type = (dx > 0) ? GESTURE_SWIPE_RIGHT : GESTURE SWIPE_LEFT;
540 - }
541 else
542 ©H {
543 last_gesture.type = (dy > 0) ? GESTURE_SWIPE DOWN : GESTURE_SWIPE UP;
544 }
545 last_gesture.magnitude = distance;
546 last_gesture.duration = end->timestamp - start->timestamp;
547 - }
548 L}

Figure 22: Swipe

After reading the gesture code, clear the register by writing 0x00 to prevent duplicate event
processing.

Now the gesture codes need to be mapped to actions. Use a lookup table or conditional logic in the
application firmware to map gesture codes to specific actions. In the code presented, a gesture
callback is used to call the handler function. This handler function is in main.c at the application level.
It currently uses printf() to output a message indicating the gesture. It is left to the end user to
adapt the code to their application.

20 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207

Bicch (=1 |8 gtotin |B ot

FOCUS LCDs

LCDs MADE SIMPLE"®

4

|Bitcuchn |Btouch.c |Btouch error.c | B msinn = mainc » B |

switch (gesture->type)

case GESTURE SWIPE
printf ("swi

gesture
break;

case GESTURE_. SWIPE
printf("sSwip
gesture

break;

case GESTURE_ SWIPE
printE("s

gesture
break;

case GESTURE_. SWIPE
printf("s
ge ture

break;

printf("Pinch
break;

N

[\ S}
s W

break;

3
3
3
3

N

case GESTURE ROTAT:
printf ("R
break;

case GESTURE ROTAT:
printf("Rota
break;

default:
break;

Gesture Mode vs. Touch Mod

case GESTURE_PINCH_.

case GESTURE_PINCH (
printf("Pinch Out: M

static void Touch GestureHandler(Touch_Gesture *gesture)

_LEFT:

>magnitude,

e= aration=%1u

gesture >durat10n),

1r, 10

._RIGHT:

ht =g

>magn1tude,

UP‘

>magn1tude,

DOWN :

>magn1tud

gesture >duratlon),

Figure 23: Gesture Handler Part 1

IN:

In: Magnitu n", gesture->magnitude);

OUT:
\n", gesture->magnitude);

E_(LW

es\n", gesture->angle);

E_CCW:

s\n", gesture->angle)

Figure 24: Gesture Handler Part 2

e

The GT911 does not support gesture mode and touch mode simultaneously. When gesture mode is
enabled, the touch controller focuses on detecting predefined gesture patterns, and regular touch
point data (such as X and Y coordinates or multi-touch information) is not actively processed or
reported. Conversely, in touch mode, the GT911 operates as a multi-touch controller, providing
detailed touch data but not performing gesture recognition.

The GT911 operates either in gesture mode or touch mode based on the configuration settings. You

need to decide which mode is more criti

To switch between modes, you need to

cal for your application.

reconfigure the controller and restart it appropriately. This

involves writing the relevant configuration values to enable or disable gesture mode and saving the

settings using the control register. Switc

hing modes during runtime is possible but may introduce

latency due to the reconfiguration process.

If your application requires both functionalities, consider designing it to toggle between modes based

21 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 $ FOCUS LCDs

on user context. For instance, gesture mode could be used for specific interfaces, while touch mode
is active during detailed user interactions. Another approach is to offload gesture recognition to the
application software using raw touch data from touch mode, although this requires additional
processing and development effort.

Optimizing Gesture Handling

To enhance responsiveness and accuracy, several steps can be taken. Fine-tune the sensitivity
parameters during configuration to match the display size and user interaction patterns. Implement
debouncing logic to avoid false positives or unintentional gesture detection. Ensure gesture data is
processed promptly to deliver a seamless user experience. During development, log the gesture
codes to validate detection accuracy and refine configuration settings.

Application Integration

The touch event handling can be integrated into the main application loop or through interrupt-
driven mechanisms. The Touch_EventHandler() and Touch_GestureHandler() functions are
implemented to process the touch events but only use printf() to output a message about the event.
The end user will need to add functional code according to the specific application requirements.

The main application configures the 12C peripheral at the beginning of main().

Bick (= = Es = s |Btouchn |Btouch.c |Btouch error.c |Bmaink [Emainc 2 B
82 /* Main program */

< int main(void)

84 B4

of all peripherals, Initializes the Flash interface and the Systick */

/* Configure the system clock */
SystemClock Config() ;

91 /* Initialize T2C %/
z I2C Config i2c_config =
930 {
94 .clocksSpeed = 1 ' /* 100 RHz */
5 .ownAddress = # /* Not used in master mode */
6 .addressingMode = 0O, /* 7-bit addressing */
7 .dualAddressing = 0, /* No dual addressing */
58 .generalCall = /* No general call */
99 T Y
101 if (I2C_Init(&i2c_config) != I2C_OK)

102 & {
103 | Error_Handler();
104t }

Figure 25: 12C Config in Main

Then the touch interface can be initialized.

22 www.FocusLCDs.com

http://www.focuslcds.com/

FOCUS LCDs

LCDs MADE SIMPLE"

FAN9207

Bizeh |Bizec =B Boeiie |Bouhh |Bouhe [Bouhemere |Bimainh Eimainc # 8|

106 /* Initialize touch interface */

107 Touch_Config touch_config =

108 o {

109 .screen_width = 800 /* Set your screen width */

110 .screen_height = /* Set your screen height */

111 .long_press_time 00, /* 1 second for long press */

12 .swipe_threshold C /* 50 pixels minimum for swipe */
113 .rotate threshold = 30 /* 30 degrees minimum for rotation */
114 - [

115

116 if (Touch Init(&touch_config) != HAL OK)

il = {
118 Error_ Handler();
119 }

Figure 26: Touch Initialization in Main

Next, the callback events need to register the event handlers.

(= [= |Bssiin |Bawiic |Btouch.n |Bitouch.c |Btouch_error.c |8 mainh Emainc » @

135 /* Register callbacks */

136 Touch RegisterEventCallback(Touch EventHandler) ;

37 Touch_RegisterGesturecallback(Touch_GestureHandler) -
138 Touch RegisterErrorCallback(Touch ErrorHandler) ;

139

Figure 27: Event Callback Handlers

The last step in getting the touch interface application code running is the main while loop. All the
other code developed for the application makes the final while loop simple to implement. Here is
what it looks like:

i2ch = |Bswith |Bgeiie |Btouchn |Btouch.c B touch_ermor.c |8 mainn BEmainc » B

158 /* Main loop */

159 while (1)

160 [{

161 /* Process touch input */

162 if (Touch Process() != HAL_OK)

163 H {

164 /* Handle error - maybe reset touch controller */
165 printf("Touch processing error\n");

166 HAL Delay(100);

167 continue;

168 E }

169

170 /* BAdd other application processing here */

171 HAL Delay(10); /* Small delay to prevent overwhelming the touch controller *
172 B }

173 L}

Figure 28: The Main While Loop

23 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

Conclusion

Using the 12C4 peripheral on the STM32H7471-DISCO, the GT911 touch controller can be successfully
configured to detect touches on the Focus LCDs E43GB-I-MW405-C display. This application note
provided the steps required to program the STM32H7471-DISCO to control the GT911 touch
controller. It walked through the configuration of the 12C peripheral, the low-level device driver for
the GT911, and the higher-level touch interface code used by the application code.

Recommended Next Steps

In the source code that can be provided by Focus LCDs, power management, error handling, and
diagnostic functions have been included. This code is currently limited to basic functionality and
more robust functions are left to the end user. It is included as a template on how to implement the
functions.

Basic touch panel calibration routines have been implemented in code but are not used in the
application layer. It is up to the end user to add this functionality into the main application

Additional Information

The source code for the GT911 Capacitive Touch Controller can be acquired by contacting Focus
LCDs.

24 www.FocusLCDs.com

http://www.focuslcds.com/

FAN9207 & FOCYS LEDs

LCD Handling Precautions
e Do not store the TFT-LCD module in direct sunlight, best stored in a dark place
e Do not leave it exposed to high temperature and high humidity for a long period of time
e Recommended temperature range is 0 to 35 °C, relative humidity should be less than 70%
e Stored modules away from condensation as formation of dewdrops may cause an abnormal
operation or failure of the module.
e Protect the module from static discharge
e Do not press or scratch the surface and protect it from physical shock or any force

Disclaimer

Buyers and others who are developing systems that incorporate FocusLCDs products (collectively,
“Designers”) understand and agree that Designers remain responsible for using their independent analysis,
evaluation, and judgment in designing their applications and that Designers have full and exclusive
responsibility to assure the safety of Designers' applications and compliance of their applications (and of all
FocusLCDs products used in or for Designers’ applications) with all applicable regulations, laws, and other
applicable requirements.

Designer represents that, with respect to their applications, Designer has all the necessary expertise to
create and implement safeguards that:

(1) anticipate dangerous consequences of failures
(2) monitor failures and their consequences, and
(3) lessen the likelihood of failures that might cause harm and take appropriate actions.

The designer agrees that prior to using or distributing any applications that include FocusLCDs products, the
Designer will thoroughly test such applications and the functionality of such FocusLCDs products as used in
such applications.

Revision History

Revision Notes Date

1.0.0 Initial Version 11/5/2024

25 www.FocusLCDs.com

http://www.focuslcds.com/

