

Ph. 480-503-4295 | NOPP@FocusLCDs.com

TFT | OLED | GRAPHIC | CHARACTER | UWVD | SEGMENT | CUSTOM

Application Note FAN9208

Programming the GT911 Capacitive Touch Controller

This user guide provides detailed information on programming

the GT911 capacitive touch controller used on the E43GB-I-

MW405-C MIPI Display.

mailto:NOPP@FocusLCDs.com

FAN9207

2 www.FocusLCDs.com

Contents
Introduction ... 4

GT911 ... 4

Focus LCDs E43GB-I-MW405-C .. 5

STM32H747I-DISCO Dev Board I2C Specification .. 6

Purpose .. 6

I2C Communication .. 7

I2C Peripheral Initialization .. 7

I2C4 Hardware and Pin Mapping.. 7

GPIO for I2C4 .. 7

Enabling the I2C4 Peripheral Clock .. 8

Initialize the I2C4 Peripheral .. 9

Establish and Validate I2C Communications .. 10

Handling Errors and Debugging .. 10

GT911 Capacitive Touch Controller Overview ... 10

GT911 Configuration and Registers .. 11

GT911 I2C4 Connections and Pin Mapping .. 11

GT911 Register Map and Overview .. 11

GT911 Register Configuration .. 11

GT911 Initialization... 12

Touch Events .. 14

Data Structure of Touch Events .. 14

Touch Initialization ... 14

Reading Touch Data .. 15

Processing Touch Events .. 15

Optimization Considerations .. 17

Gesture Recognition ... 18

Configuring the GT911 for Gesture Recognition .. 18

Processing Gesture Events ... 18

Gesture Mode vs. Touch Mode .. 21

Optimizing Gesture Handling ... 22

Application Integration .. 22

Conclusion .. 24

Recommended Next Steps ... 24

Additional Information ... 24

LCD Handling Precautions .. 25

Disclaimer ... 25

Revision History .. 25

http://www.focuslcds.com/

FAN9207

3 www.FocusLCDs.com

List of Figures
Figure 1: E43GB-I-MW405-C .. 5
Figure 2: GPIO Configuration ... 8
Figure 3: RCC I2C and GPIO Peripheral Clock Enable ... 9
Figure 4: Initializing the I2C4 Peripheral .. 9
Figure 5: GT911 Main Registers ... 11
Figure 6: Reset Sequence ... 12
Figure 7: GT911 Initialization ... 12
Figure 8: GT911 Configuration ... 13
Figure 9: Touch Data Structure .. 14
Figure 10: Touch Interface Initialization .. 14
Figure 11: Reading the Touch Events from Touch_Process() ... 15
Figure 12: The Call to Process_TouchEvents() ... 15
Figure 13: Retrieved the Raw Touch Data .. 16
Figure 14: Mapping the Coordinates ... 16
Figure 15: Touch Event Type .. 16
Figure 16: Touch Lift Off Processing ... 17
Figure 17: Touch Event Processing in the Callback Function ... 17
Figure 18: Capturing the Gesture Event ... 18
Figure 19: Process_Gestures() .. 19
Figure 20: Pinch .. 19
Figure 21: Rotate .. 20
Figure 22: Swipe ... 20
Figure 23: Gesture Handler Part 1 .. 21
Figure 24: Gesture Handler Part 2 .. 21
Figure 25: I2C Config in Main ... 22
Figure 26: Touch Initialization in Main ... 23
Figure 27: Event Callback Handlers .. 23
Figure 28: The Main While Loop .. 23

http://www.focuslcds.com/

FAN9207

4 www.FocusLCDs.com

Programming the GT911 Capacitive Touch Controller

The GT911 is a capacitive touch controller used in embedded systems for its precision and versatility.
It supports up to 5-point multi-touch with high accuracy and fast response times. The GT911 also
supports several built-in gesture recognitions, including swipe, multi-press, and pinch.

The controller features adjustable resolution, configurable touch sensitivity, and advanced noise
immunity, making it ideal for modern touch-based applications. With its I2C interface, the GT911
simplifies integration into a variety of embedded platforms.

Introduction
This application note focuses on using the GT911 touch controller in conjunction with the
STM32H747I-DISCO development board and the Focus LCDs E43GB-I-MW405-C display. The E43GB-I-
MW405-C is a 4.3-inch TFT LCD with a resolution of 480 x 800 pixels, offering bright and vivid visuals
for user interfaces. The display includes the GT911 capacitive touch controller, enabling responsive
and precise touch input across its surface.

The STM32H747I-DISCO development board, based on the STM32H747 dual-core microcontroller,
provides powerful processing capabilities and a rich set of peripherals. Its I2C4 peripheral is utilized
for communication with the GT911 touch controller. The I2C4 interface operates with flexible clock
configurations, supports multiple addressing modes, and integrates robust error handling, making it
well-suited for handling touch data efficiently.

The driver code being developed in this application note takes advantage of the ARM CMSIS header
files and some of the low-level STM32 HAL code for peripheral initialization. The GT911, Touch, and
higher-level code is of a bare-metal design to facilitate adapting to other microcontroller platforms.
Only the low-level peripheral code is dependent on the MCU architecture.

This document covers:

1. Initializing the I2C4 peripheral on the STM32H747I-DISCO.
2. Configuring and initializing the GT911 touch controller.
3. Reading and writing data to the GT911 touch controller via I2C.
4. Developing application-level code to process touch events and report X/Y coordinates.
5. Programming gesture recognition.

GT911
The GT911 is a high-performance capacitive touch controller manufactured by Goodix Technology
supporting multi-touch and gesture detection.

http://www.focuslcds.com/

FAN9207

5 www.FocusLCDs.com

Key features include:

• Support for up to 5-point multi-touch detection

• Built-in touch key functionality

• 32-bit CPU core for efficient touch processing

• Automatic calibration and drift compensation

• Low power consumption modes:

• Normal working current: 3.5mA (typical)

• Sleep mode current: < 50μA

• Hibernation current: < 10μA

• Operating voltage range: 2.8V to 3.3V

• Sampling rate up to 100Hz

• High noise immunity and interference resistance

• Built-in voltage regulator

• Support for various screen sizes up to 10 inches

• I2C communication interface up to 400 kHz

• Programmable interrupt trigger conditions

Focus LCDs E43GB-I-MW405-C
The Focus LCDs E43GB-I-MW405-C is a 4.3-inch TFT LCD module with integrated GT911 capacitive
touch controller.

Figure 1: E43GB-I-MW405-C

http://www.focuslcds.com/

FAN9207

6 www.FocusLCDs.com

Display Characteristics:

• 4.3-inch TFT LCD panel

• Resolution: 480 x 800 pixels (portrait orientation)

• 16.7M colors (24-bit RGB interface)

• LED backlight with 500 cd/m² typical brightness

• Viewing angle: 80°/80°/80°/80° (L/R/U/D)

• Operating temperature: -20°C to +70°C

Touch Panel Specifications:

• GT911 capacitive touch controller

• 5-point multi-touch capability

• I2C interface (address 0xBA)

• 2mm cover glass thickness

• >85% optical transparency

• Surface hardness: 6H

• Touch response time: <5ms

• Position reporting accuracy: ±2mm

STM32H747I-DISCO Dev Board I2C Specification
The STM32H747I-DISCO development board features multiple I2C interfaces with the following
capabilities:

• Four I2C interfaces (I2C1, I2C2, I2C3, and I2C4)

• Support for Standard Mode (SM, up to 100 kHz)

• Support for Fast Mode (FM, up to 400 kHz)

• Fast Mode Plus (FM+, up to 1 MHz) on all I2C peripherals

• Programmable digital noise filters

• Programmable analog noise filters

• SMBus 2.0/PMBus compatible

• Programmable timings and duty cycles

• DMA support for efficient data transfer

• Dual addressing capability

• 7-bit and 10-bit addressing modes

• Hardware CRC calculation

Purpose
This application note will walk through the implementation process, providing detailed C code
snippets and explanations for each critical step integrating the GT911 touch controller on the Focus
LCDs E43GB-I-MW405-C display with the STM32H747I-DISCO board.

http://www.focuslcds.com/

FAN9207

7 www.FocusLCDs.com

I2C Communication
The GT911 touch controller communicates via I2C, specifically using I2C4 on the STM32H747I-DISCO
board with a device address of 0xBA and a maximum clock speed of 400kHz. In this application the
standard clock speed of 100kHz will be used for reliable operation.

The driver being developed includes error handling, timeout management, and proper peripheral
initialization. It's configured for 100 kHz standard mode operation but can be adjusted for fast mode
(400 kHz) by modifying the timing parameter in I2C_Init.

I2C Peripheral Initialization
The process of initializing the I2C peripheral on the STM32H7474I-DISCO includes configuring the

GPIO pins, initializing the I2C4 peripheral, and finally establishing I2C communications.

I2C4 Hardware and Pin Mapping

I2C4 is another I2C peripheral available on the STM32H747. On the STM32H747I-DISCO development

board, I2C4 is typically mapped to the following pins:

• PD12 for I2C4_SCL (Clock Line)

• PD13 for I2C4_SDA (Data Line)

Check the board schematics to confirm the pin assignments and ensure no conflicts with other

peripherals or features using these pins.

GPIO for I2C4

The GPIO pins used for I2C4 must be configured as alternate functions to support I2C

communication. Proper pin configuration ensures signal integrity and compatibility with the GT911

touch controller.

1. Set PD12 and PD13 as GPIO_MODE_AF_OD (alternate function open drain). This configuration

is essential for bidirectional communication on the I2C bus.

2. Enable the internal pull-up resistors (GPIO_PULLUP) on both pins to keep them in a known

state during idle conditions.

3. Set the GPIO speed to "Fast" or "High" for high-frequency I2C communication.

4. Assign the alternate function for I2C4:

a. PD12 – AF4_I2C4

b. PD13 – AF4_I2C4

Ensure external pull-up resistors (typically 2.2 kΩ up to 4.7 kΩ) are connected to the I2C bus lines if

internal pull-ups are insufficient for reliable operation.

http://www.focuslcds.com/

FAN9207

8 www.FocusLCDs.com

Figure 2: GPIO Configuration

The function I2C_MspInit() creates a GPIO structure for configuring the IO pins. Once that

structure is initialized the RCC clock for the GPIO peripheral is enabled. The next step is to populate

the GPIO structure with the configuration to enable I2C on pins 12 and 13.

Enabling the I2C4 Peripheral Clock

Before using the I2C4 peripheral, its clock source must be enabled through the RCC (Reset and Clock

Control).

1. Use the appropriate macro to enable the I2C4 clock, such as HAL_RCC_I2C4_CLK_ENABLE()

in the HAL library.

2. Verify that the clock for GPIO port D is also enabled, as I2C4 pins are connected to this port.

For example:

a. HAL_RCC_GPIOD_CLK_ENABLE()

Enabling these clocks ensures the GPIO and I2C peripherals can operate correctly.

http://www.focuslcds.com/

FAN9207

9 www.FocusLCDs.com

Figure 3: RCC I2C and GPIO Peripheral Clock Enable

Initialize the I2C4 Peripheral

The I2C4 peripheral must be initialized with settings compatible with the GT911 touch controller. This

includes:

• Clock Speed: Set the I2C clock speed based on the GT911's requirements, such as 100 kHz

(Standard Mode) or 400 kHz (Fast Mode).

• Addressing Mode: Configure I2C4 for 7-bit addressing, as the GT911 typically uses a 7-bit

slave address (e.g., 0x5D [0xBA/0xBB] or 0x14 [0x28/0x29]).

• Timing Configuration: Calculate the timing register values using STM32CubeMX or manually

determine them based on the reference manual. This configuration depends on the I2C clock

source, peripheral clock frequency, and desired I2C speed.

• Initialization: Use HAL, LL (Low-Level) drivers, or direct register manipulation to initialize the

I2C4 peripheral. Specify parameters such as the clock speed, addressing mode, and timing

values.

Figure 4: Initializing the I2C4 Peripheral

http://www.focuslcds.com/

FAN9207

10 www.FocusLCDs.com

Establish and Validate I2C Communications

Once the I2C4 peripheral is initialized, you can communicate with the GT911 touch controller. The

typical order of events is:

1. Generate a Start Condition: The master (STM32H747) generates a start condition by pulling

the SDA line low while SCL remains high.

2. Send the Slave Address: Send the 7-bit GT911 address followed by the R/W bit (0 for write, 1

for read).

3. Exchange Data: Transmit or receive data in 8-bit chunks. For each byte sent, the slave must

send an acknowledgment (ACK).

4. Generate a Stop Condition: The master releases the SDA line to high while SCL is high to

signal the end of communication.

After configuring the I2C4 peripheral, verify the setup to ensure successful communication with the

GT911. Use an oscilloscope or logic analyzer to monitor the SDA and SCL lines. Inspect the traffic for

proper waveforms and timings on PD12 (SCL) and PD13 (SDA). Verify the presence of pull-up resistors

(internal or external, typically between 2.2kΩ to 4.7kΩ, but could be as high as 10kΩ) on the I2C lines.

Finally, test the basic read and write operations to ensure that the GT911 responds correctly to its

I2C address.

Handling Errors and Debugging

I2C communication issues can occur due to electrical noise, incorrect configuration, or addressing

errors. Implement robust error handling:

1. Check for acknowledgments (ACK/NACK) after every data frame.

2. Handle bus errors, arbitration losses, or timeouts using HAL or custom routines.

3. Implement retry mechanisms for transient failures.

GT911 Capacitive Touch Controller Overview
The GT911 is a capacitive touch controller that communicates via the I2C bus. It supports up to 5

touch points and offers flexible configuration for screen resolution and touch parameters.

Key features include: I2C slave mode with a default 7-bit address, configurable resolution and

orientation, and registers for status, configuration, and touch data.

http://www.focuslcds.com/

FAN9207

11 www.FocusLCDs.com

GT911 Configuration and Registers
GT911 I2C4 Connections and Pin Mapping

The GT911 is connected to the STM32H747I-DISCO's I2C4 peripheral as follows:

• I2C4 SCL (Clock Line): PD12 – configured in the I2C code.

• I2C4 SDA (Data Line): PD13 – configured in the I2C code

• Interrupt Line: PK7 (used to detect touch events).

• Reset Line: PG3 (used to reset the GT911).

• Configure PK7 as an input pin for interrupt detection.

• Configure PG3 as an output pin for resetting the GT911.

Verify these pin connections on the development board and ensure no pin conflicts.

GT911 Register Map and Overview

The GT911 touch controller features a comprehensive internal register map for configuration and

control. Key register sections include:

Register Range Description Access

0x8040 – 0x8046 Command and Status R/W

0x8047 – 0x80FF Configuration R/W

0x8100 – 0x813F Coordinate Data R

0x8140 – 0x814E Product ID and Information R

0x814F – 0x8156 Touch Point Data R

0x8157 – 0x81FF Reserved -

GT911 Register Configuration

Key registers for GT911 configuration:

Figure 5: GT911 Main Registers

http://www.focuslcds.com/

FAN9207

12 www.FocusLCDs.com

GT911 Initialization

The initialization of the GT911 begins with configuring the I2C peripheral on the STM32H747I-DISCO

board. The I2C interface is enabled and set to operate at either standard (100kHz) or fast (400kHz)

mode, depending on system requirements.

GPIO pins for the INT and RESET lines must also be configured. The RESET pin is set as an output,

while the INT pin is configured as an open-drain output. The default state for these pins is High for

RESET and Low for INT.

The GT911 is then initialized through a specific reset sequence. The sequence involves toggling the

RESET pin, holding the INT pin low, and finally releasing it after bringing the RESET pin high. A wait

time of 100 milliseconds ensures the controller has enough time to initialize.

Figure 6: Reset Sequence

Communication is verified by reading the Product ID (1) from the GT911’s registers using its I2C

address. A successful read operation (2 and 3) confirms that the device is properly initialized.

Figure 7: GT911 Initialization

http://www.focuslcds.com/

FAN9207

13 www.FocusLCDs.com

The GT911’s configuration registers, starting at address 0x8047, allow fine-tuning of the touch

controller’s behavior. The configuration process begins with preparing the required settings. Key

parameters include the number of touch points (set to five), touch threshold, X and Y resolution

(480x800), interrupt trigger mode, and refresh rate (set to 5 milliseconds). These values are written

to the configuration registers sequentially.

Figure 8: GT911 Configuration

Several registers must be configured at initialization to function properly. Some of the key

parameters are:

Register Name Value Description

0x8047 X Output Max 0x01E0 Horizontal Resolution (480)

0x8049 Y Output Max 0x0320 Vertical Resolution (800)

0x804B Touch Points 0x05 Maximum Number of Touch Points

0x8057 Module Switch 1 0x14 Enable Interrupt Trigger on Touch

0x805D Refresh Rate 0x05 Touch Data Refresh Rate (5ms)

Once the configuration data is written, it is saved to non-volatile memory by writing to the specific

control register located at 0x8040. Writing a value of 0x01 to this register ensures that the

configuration is stored and will persist across power cycles and resets. After saving the configuration,

it is necessary to write 0x80 to the same control register at 0x8040. This step transitions the GT911

from configuration mode to application (operation) mode, enabling it to process touch data.

Touch data is continuously updated in the GT911’s memory space, beginning at address 0x814E. The

system can either poll these addresses periodically or rely on the interrupt mechanism to read the

data only when a touch event occurs. The data includes details about the number of touch points,

their coordinates, and other relevant attributes.

http://www.focuslcds.com/

FAN9207

14 www.FocusLCDs.com

Touch Events
Data Structure of Touch Events
The GT911 stores touch event data in its memory, starting at address 0x814E. The structure of the

touch data includes the following key fields:

• Status Byte: This byte indicates the number of touch points detected and the status of the

touch data.

• Touch Point Data: For each detected touch point, the data includes:

• X-coordinate (2 bytes): The horizontal position of the touch point.

• Y-coordinate (2 bytes): The vertical position of the touch point.

• Touch ID: An identifier for the touch point, allowing tracking of individual touches.

• Touch Event: The type of event, such as touch down, lift off, or move.

Each touch point’s data is arranged sequentially in the memory block.

Figure 9: Touch Data Structure

Touch Initialization
Initialization of the touch interface provides some of the configuration data to be stored in the GT911

configuration structure. The maximum number of touch points and the resolution of the touch panel

are the data stored in the config structure. Then the history, current state, and previous state arrays

are set to zero.

Figure 10: Touch Interface Initialization

http://www.focuslcds.com/

FAN9207

15 www.FocusLCDs.com

Reading Touch Data
Check for interrupts if the INT pin is configured, as the interrupt signal indicates new touch data is

available. To simplify the code for this application note, polling is used to check for updates. Read the

status byte at address 0x814E first to determine if new touch data is available. This byte also specifies

the number of touch points (ranging from 0 to 5).

Figure 11: Reading the Touch Events from Touch_Process()

If the status byte indicates new data, the subsequent touch point information is read from the

GT911’s memory. Each touch point occupies a fixed number of bytes, and the data is extracted for all

active touch points. After reading the touch data, the status byte must be cleared by writing 0x00

back to address 0x814E. This step notifies the controller that the data has been processed and

prevents duplicate readings. This is handled from Touch_Process() by calling
Process_TouchEvents().

Figure 12: The Call to Process_TouchEvents()

Processing Touch Events
The touch data is then retrieved, and it must be processed to get the information for the application.

As a first step the touch ID should be retrieved. The touch ID helps differentiate between multiple

touch points, allowing the system to track individual touches as they move or lift off. Then the touch

event must be interpreted.

http://www.focuslcds.com/

FAN9207

16 www.FocusLCDs.com

Figure 13: Retrieved the Raw Touch Data

Mapping the coordinates is the next step in the process. The raw X and Y coordinates are scaled to

the resolution of the touch panel (e.g., 480x800) to align with the application’s display requirements.

Figure 14: Mapping the Coordinates

The event type for each touch point is analyzed to determine the action. For example:

• Touch Down: A new touch point has been detected.

• Touch Move: An existing touch point has changed its position.

• Touch Lift Off: A touch point has been released.

Figure 15: Touch Event Type

The release or lift off event is processed separately.

http://www.focuslcds.com/

FAN9207

17 www.FocusLCDs.com

Figure 16: Touch Lift Off Processing

Based on the touch data, application-specific actions are executed. This might include updating a

graphical user interface, triggering events, or controlling devices. The processing of the touch events

is handled in the callback function located in the main.c file.

Figure 17: Touch Event Processing in the Callback Function

Optimization Considerations
Efficient handling of touch events is critical to maintaining responsiveness in the application. Using

the INT pin to signal new data reduces the need for constant polling, conserving processing

resources. Then retrieve all touch point data in a single I2C transaction to minimize communication

overhead. Implement debouncing logic to filter out noise and spurious touch events, improving

accuracy. There is some debouncing logic already part of the GT911 controller. This is where the

filtering registers are utilized. When possible, ensure the touch data is processed within the required

refresh period (e.g., 5 milliseconds) to maintain a smooth user experience.

http://www.focuslcds.com/

FAN9207

18 www.FocusLCDs.com

Gesture Recognition
The GT911 uses its integrated gesture engine to analyze touch data patterns in real-time. By tracking

the movement and position of one or more touch points, the controller identifies predefined

gestures. These gestures are mapped to specific codes, which are then stored in a dedicated register

for retrieval by the host system.

The commonly supported gestures include swipe gestures (up, down, left, and right), zoom gestures

(pinch-in and pinch-out), long press, and double tap. The gesture recognition process reduces the

computational burden on the host system by offloading pattern analysis to the GT911.

Configuring the GT911 for Gesture Recognition
Gesture detection is enabled by writing to the gesture enable register, typically located in the

configuration block of the GT911’s memory. The specific address and value depend on the desired

gesture set. Adjust gesture-specific parameters such as sensitivity, speed thresholds, and movement

ranges. These parameters ensure accurate recognition based on the application’s requirements and

display size.

After updating the gesture settings, write 0x01 to the control register at address 0x8040 to save the

configuration. Transition the GT911 to application mode by writing 0x80 to the same register.

Verify that gestures are detected correctly by reading gesture event data from the dedicated register

after performing gestures on the touch panel.

Processing Gesture Events
The GT911 stores gesture event information at address 0x814F. This register contains the gesture

code, which corresponds to the detected gesture.

The code breaks up the gesture processing into several functions. If the gesture feature of the GT911

is enabled in the firmware, then the initial processing is performed in the Touch_Process() function.

Figure 18: Capturing the Gesture Event

http://www.focuslcds.com/

FAN9207

19 www.FocusLCDs.com

Once the gesture event has been captured, the event is processed in the Process_Gestures()

function. The gesture code is retrieved from the gesture register. This code uniquely identifies the

type of gesture detected (e.g., swipe left, zoom in).

Figure 19: Process_Gestures()

Additional processing is called to handle the pinch, rotation, and swipe gestures.

Figure 20: Pinch

http://www.focuslcds.com/

FAN9207

20 www.FocusLCDs.com

Figure 21: Rotate

Figure 22: Swipe

After reading the gesture code, clear the register by writing 0x00 to prevent duplicate event

processing.

Now the gesture codes need to be mapped to actions. Use a lookup table or conditional logic in the

application firmware to map gesture codes to specific actions. In the code presented, a gesture

callback is used to call the handler function. This handler function is in main.c at the application level.

It currently uses printf() to output a message indicating the gesture. It is left to the end user to

adapt the code to their application.

http://www.focuslcds.com/

FAN9207

21 www.FocusLCDs.com

Figure 23: Gesture Handler Part 1

Figure 24: Gesture Handler Part 2

Gesture Mode vs. Touch Mode
The GT911 does not support gesture mode and touch mode simultaneously. When gesture mode is

enabled, the touch controller focuses on detecting predefined gesture patterns, and regular touch

point data (such as X and Y coordinates or multi-touch information) is not actively processed or

reported. Conversely, in touch mode, the GT911 operates as a multi-touch controller, providing

detailed touch data but not performing gesture recognition.

The GT911 operates either in gesture mode or touch mode based on the configuration settings. You

need to decide which mode is more critical for your application.

To switch between modes, you need to reconfigure the controller and restart it appropriately. This

involves writing the relevant configuration values to enable or disable gesture mode and saving the

settings using the control register. Switching modes during runtime is possible but may introduce

latency due to the reconfiguration process.

If your application requires both functionalities, consider designing it to toggle between modes based

http://www.focuslcds.com/

FAN9207

22 www.FocusLCDs.com

on user context. For instance, gesture mode could be used for specific interfaces, while touch mode

is active during detailed user interactions. Another approach is to offload gesture recognition to the

application software using raw touch data from touch mode, although this requires additional

processing and development effort.

Optimizing Gesture Handling
To enhance responsiveness and accuracy, several steps can be taken. Fine-tune the sensitivity

parameters during configuration to match the display size and user interaction patterns. Implement

debouncing logic to avoid false positives or unintentional gesture detection. Ensure gesture data is

processed promptly to deliver a seamless user experience. During development, log the gesture

codes to validate detection accuracy and refine configuration settings.

Application Integration
The touch event handling can be integrated into the main application loop or through interrupt-

driven mechanisms. The Touch_EventHandler() and Touch_GestureHandler() functions are

implemented to process the touch events but only use printf() to output a message about the event.

The end user will need to add functional code according to the specific application requirements.

The main application configures the I2C peripheral at the beginning of main().

Figure 25: I2C Config in Main

Then the touch interface can be initialized.

http://www.focuslcds.com/

FAN9207

23 www.FocusLCDs.com

Figure 26: Touch Initialization in Main

Next, the callback events need to register the event handlers.

Figure 27: Event Callback Handlers

The last step in getting the touch interface application code running is the main while loop. All the

other code developed for the application makes the final while loop simple to implement. Here is

what it looks like:

Figure 28: The Main While Loop

http://www.focuslcds.com/

FAN9207

24 www.FocusLCDs.com

Conclusion
Using the I2C4 peripheral on the STM32H747I-DISCO, the GT911 touch controller can be successfully

configured to detect touches on the Focus LCDs E43GB-I-MW405-C display. This application note

provided the steps required to program the STM32H747I-DISCO to control the GT911 touch

controller. It walked through the configuration of the I2C peripheral, the low-level device driver for

the GT911, and the higher-level touch interface code used by the application code.

Recommended Next Steps
In the source code that can be provided by Focus LCDs, power management, error handling, and

diagnostic functions have been included. This code is currently limited to basic functionality and

more robust functions are left to the end user. It is included as a template on how to implement the

functions.

Basic touch panel calibration routines have been implemented in code but are not used in the

application layer. It is up to the end user to add this functionality into the main application

Additional Information
The source code for the GT911 Capacitive Touch Controller can be acquired by contacting Focus

LCDs.

http://www.focuslcds.com/

FAN9207

25 www.FocusLCDs.com

LCD Handling Precautions
• Do not store the TFT-LCD module in direct sunlight, best stored in a dark place

• Do not leave it exposed to high temperature and high humidity for a long period of time

• Recommended temperature range is 0 to 35 °C, relative humidity should be less than 70%

• Stored modules away from condensation as formation of dewdrops may cause an abnormal
operation or failure of the module.

• Protect the module from static discharge

• Do not press or scratch the surface and protect it from physical shock or any force

Disclaimer

Buyers and others who are developing systems that incorporate FocusLCDs products (collectively,
“Designers”) understand and agree that Designers remain responsible for using their independent analysis,
evaluation, and judgment in designing their applications and that Designers have full and exclusive
responsibility to assure the safety of Designers' applications and compliance of their applications (and of all
FocusLCDs products used in or for Designers’ applications) with all applicable regulations, laws, and other
applicable requirements.

Designer represents that, with respect to their applications, Designer has all the necessary expertise to
create and implement safeguards that:

(1) anticipate dangerous consequences of failures

(2) monitor failures and their consequences, and

(3) lessen the likelihood of failures that might cause harm and take appropriate actions.

The designer agrees that prior to using or distributing any applications that include FocusLCDs products, the
Designer will thoroughly test such applications and the functionality of such FocusLCDs products as used in
such applications.

Revision History
Revision Notes Date

1.0.0 Initial Version 11/5/2024

http://www.focuslcds.com/

